
Stochastic dynamics and Edmonds’ algorithm

Jonathan Newton∗ and William H. Sandholm†

November 25, 2019

Abstract

Recently, there has been a revival of interest in cyclic decompositions of stochastic
dynamics. These decompositions consider the behavior of dynamics over the short,
medium and long run, aggregating cycles of behavior into progressively larger cycles,
eventually encompassing the entire state space. We show that these decompositions
are equivalent to the aggregative stage of Edmonds’ algorithm and that this equiva-
lence can be used to recover well-known results in the literature.

1. Introduction

It is known that, under a variety of behavioral dynamics, including variants of best
response dynamics, behavior in a population can take a long time to converge to equilib-
rium (Ellison, 1993).1 This is not universal, and indeed it has been shown that in several
situations convergence is relatively rapid. These situations included specific interaction
structures (Ellison, 1993, 2000; Young, 2011), processes with various forms of inertia (Nor-
man, 2009; Arieli and Young, 2016), matching problems (Newton and Sawa, 2015), and
specific payoff parameters under both individualistic (Arieli et al., 2019) and coalitional
(Newton and Angus, 2015) dynamics.

Of course, in other settings, rapid convergence may fail to occur. In such cases, the
dynamics of behavior in the short and medium run become important. Recently, some
economists have turned their attention to studying such behavior. In particular, Cui and

∗Institute of Economic Research, University of Kyoto, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501.
e-mail: newton@kier.kyoto-u.ac.jp; website: jonathannewton.net.
†Department of Economics, University of Wisconsin, 1180 Observatory Drive, Madison, WI 53706. e-

mail: whs@ssc.wisc.edu; website: www.ssc.wisc.edu/˜whs.
1The meaning of “a long time” can either be interpreted qualitatively or mathematically, an example of

the latter being that convergence time increases (exponentially, polynomially, linearly) in population size.
The equilibria considered in such models tend to be some subset of Nash equilibria with good stability
properties.

Zhai (2010); Levine and Modica (2016) consider the cyclic decomposition approach of
Freidlin and Wentzell (1984). This approach describes short run behavior as cycles (of
which a single absorbing state is a special case) that can be combined into larger cycles
that describe medium run behavior. These cycles can in turn be combined into cycles that
describe long run behavior.

In the current paper, we show that these cyclic decompositions are equivalent to
the aggregative stage of the famous Chiu-Liu-Edmond’s (CLE) algorithm (Chu and Liu,
1965; Edmonds, 1967). The CLE algorithm solves (in polynomial time) the problem of
finding minimal (or maximal) spanning trees of weighted directed graphs. When the
vertices of a graph correspond to states in a Markov chain and the edge weights measure
transition probabilities between these states, solutions to this problem predict long run
behavior (Freidlin and Wentzell, 1984), a connection that was later introduced to economics
(Young, 1993; Kandori et al., 1993) and applied to many different economic problems (see
Sandholm, 2010; Newton, 2018, for an overview). Our result further illuminates this
connection: just as long run behavior corresponds to the solutions of minimum cost
spanning tree problems, short and medium run behavior corresponds to the algorithm
that is commonly used to solve such problems.

The usefulness of our result is immediately apparent. Many implementations of the
CLE algorithm exist. Applying such code to a dynamic process such as those considered
here, the interim iterations of the algorithm describe the short and, subsequently, medium
run behavior of the process, with the final output describing long run behavior. In fact,
the disaggregative stage of the CLE algorithm that gives minimal spanning trees can
also be shown to give long run stable states. Hence, these two concepts are equivalent
and the minimal spanning tree characterization of long run stability can be regarded
as a direct implication of the CLE algorithm. Furthermore, the disaggregation of cyclic
decompositions leads to a natural structure on the cycles, previously noted by Catoni
(1999) for the particular cyclic decompositions considered in Freidlin and Wentzell (1984).
This structure permits precise estimation of (the order of magnitude of) probability flows
out of cycles and, consequently, the stationary distribution of the process.

The paper is organized as follows. Section 2 gives the model, definitions and some
preliminary results. Section 3 contains the main analysis and results. All proofs are given
in the Appendix.

–2–

2. Model

2.1 Primitives

Let {Pη}η, η ≥ 0 be a parameterized collection of Markov transition matrices on the finite
state space X . That is, for x, y ∈ X , Pηxy denotes the probability of a transition from state
x to state y at parameter value η. Assume that the collection is weakly regular (Sandholm,
2010). That is, Pη is continuous in η, the process is irreducible for strictly positive η, and
if, for some x, y , x, P0

xy = 0 and Pη̂xy > 0 for some η̂ > 0, then {Pηxy}η satisfies

(1) Pηxy = exp
(
−

1
η

(
k + o(1)

))
for some k ≥ 0,

where o(1) represents a term that approaches zero as η approaches zero.

2.2 Composite states

For η > 0, irreducibility of the process implies the existence of a unique invariant
probability distribution, µη. Assume that the limit µ0 = limη→0 µη exists. A set of states
α ⊆ X shall be referred to as a composite. Let µηα denote the mass placed on α by µη. If
µ0
{x} > 0, we say that x is stochastically stable (Foster and Young, 1990). For η > 0, we

denote the share of the invariant probability mass on composite α that flows each period
to another composite β by P̄ηαβ. That is,

(2) P̄ηαβ =
1
µηα

∑
x∈α
y∈β

µη
{x}P

η
xy.

Note that when α and β are singleton sets, α = {x} and β = {y}, we have that P̄ηαβ = Pηxy.
We define a cost function

C(·, ·) : (Powerset(X) r {∅}) × (Powerset(X) r {∅})→ R+ ∪ {∞}

that will measure the order of magnitude of probability flows between composites. If
P̄η̂αβ > 0 for some η̂ > 0, then define

(3) C(α, β) = lim
η→0
−η log P̄ηαβ

and if P̄ηαβ = 0 for all η, then let C(α, β) = ∞. Cost functions measure the order of magnitude

–3–

of transition probabilities for low values of η. Transitions with a high cost are less likely
than transitions with a low cost. Similarly define the stationary distribution decay rate as

(4) rα = lim
η→0
−η logµηα,

which measures the order of magnitude of invariant probabilities for low values of η.

2.3 Cycles

For a given partition P` of X with at least two elements, define a least cost transition
correspondence σ` : P` ⇒ P` and a function C that gives the cost of such least cost transitions.
For each composite α ∈ P`, we define

(5) σ`(α) = argmin
β∈P`r{α}

C(α, β) and C(α) = min
β∈P`r{α}

C(α, β).

Note that there is no ` subscript on C. This is because the quantity C(α) will prove to be
independent of the partition structure of X r α.

A cycle in P` is a set Γ` ⊆ P` such that Γ` =
⋃m̄

m=0{α
m
} for some sequence α0, . . . , αm̄ that

satisfies α1
∈ σ`(α0), α2

∈ σ`(α1), . . . , α0
∈ σ`(αm̄). Note that the sequence α0, . . . , αm̄ may

contain repeated elements. Let Γ` be the set of all cycles in P`.

Lemma 2.1. If αm, αn are elements of some cycle Γ` in P`, then

rαm + C(αm) = rαn + C(αn).

To see the intuition behind Lemma 2.1, consider a cycle with an associated sequence
α0, . . . , αm̄. At a stationary distribution, (i) the flow of probability from α0 to α1 cannot be
greater than the total flow of probability out of α1; (ii) the order of magnitude of the total
flow from α1 equals the order of magnitude of the largest flows from α1, one of which
is to α2. Therefore, the order of magnitude of the total flow from α0 to α1 is no greater
than the order of magnitude of the total flow from α1 to α2. Writing in terms of decay
rates, recalling that larger decay rates imply a smaller order of magnitude, and iterating
the above argument, we have

rα0 + C(α0) ≥ rα1 + C(α1) ≥ . . . ≥ rαm̄ + C(αm̄) ≥ rα0 + C(α0),

which gives the result. Hence the probability flows around any given cycle in P` are all
of the same order of magnitude, even if there are many such cycles with possibly shared

–4–

α β

γ

δ

ε

Γl =

{
{α, β}, {β, γ}, {δ, ε}, {α, β, γ}

}

ΓC
l =

{
{δ, ε}

}

ΓS
l =

{
{α, β}, {β, γ}, {δ, ε}

}

Figure 1: Cycles. For given least cost correspondence, the set of cycles, closed cycles and
simple cycles.

elements.

2.4 Cyclic decompositions

A nested sequence of partitions P0, . . . ,PL, P0 =
⋃

x∈X {{x}} and PL = {X }, is a cyclic
decomposition if, for all α < P`, α ∈ P`+1, we have that α is the union of the elements of
some cycle Γ` in P`. We say that Γ` is consolidated to give α. If we define the birthday of
composite α as d(α) = min{` : α ∈ P`}, and let Π(α) = {π ∈ Pd(α)−1 : π ⊂ α} be the set of pieces
of α, meaning the composites merged to form α on its birthday, then for all α ∈ P`, ` ≥ 1,
|α| ≥ 2, we have that Π(α) = Γd(α)−1 for some Γd(α)−1 ∈ Γd(α)−1.

A cycle Γ` in P` is closed if it is closed under σ` in that σ`(Γ`) ⊆ Γ` (see Figure 1). Note
that any two closed cycles must be disjoint. Let ΓC

` be the set of closed cycles in P`.

Definition. An FW decomposition is a cyclic decomposition P FW
0 , . . . ,P FW

L such that, for ` =

0, . . . ,L − 1, every cycle in ΓC
` is consolidated to give P FW

`+1 .

Lemma 2.2. An FW decomposition exists and is unique.

These decompositions are those considered in Freidlin and Wentzell (1984) and in later
simplifications and extensions of their analysis (Catoni, 1999; Cui and Zhai, 2010; Levine
and Modica, 2016).

A cycle P` is simple if it satisfies the definition of a cycle for some sequence α0, . . . , αm

with no repeated elements (see Figure 1). Let ΓS
` be the set of simple cycles in P`. Freidlin

and Wentzell (1984, p.180) effectively assume that σ`(·) is always a singleton. Under this
assumption, every cycle is both closed and simple. This assumption is not made in Catoni
(1999); Cui and Zhai (2010); Levine and Modica (2016). Note that in models with uniform
mutations such as those of Kandori et al. (1993) and Young (1993) it is rarely the case that
σ0(·) is a singleton.

–5–

Definition. A CLE decomposition is a cyclic decomposition P Ed
0 , . . . ,P Ed

L such that, for ` =

0, . . . ,L − 1, precisely one cycle Γ` ∈ ΓS
` is consolidated to give P Ed

`+1.

Lemma 2.3. A CLE decomposition exists.

A CLE decomposition consolidates one simple cycle at each stage. The reason we call this
a CLE decomposition is that we will show that such a decomposition is identical to the
steps followed by the famous Chu-Liu/Edmonds’ Algorithm (Edmonds, 1967; Chu and
Liu, 1965).

3. Analysis

Take a cyclic decomposition P0, . . . ,PL. At any value of η, the probability mass on any
composite α ∈ P` under the invariant measure must be distributed amongst its pieces.
That is, µηα =

∑
αm∈Π(α) µ

η
αm . This implies the following relationship in the limit as η→ 0.

Lemma 3.1. If α ∈ P`, |α| > 1, then rα = minαm∈Π(α) rαm .

Using Lemmas 2.1 and 3.1, we can show the relationship between the cost function on
composites in P` and the cost function on composites in P`−1.

Lemma 3.2. If ω, α ∈ P`, d(ω) < `, d(α) = `, Π(α) = {α0, . . . , αm̄
}, then

C(ω, α) = min
αm∈Π(α)

C(ω, αm),(6)

C(α,ω) = min
αm∈Π(α)

(
max
αn∈Π(α)

C (αn) − C (αm) + C(αm, ω)
)
,(7)

This shows that when building a cyclic decomposition, we can ignore raw transition
probabilities except at the first step when we calculate the values of the cost function on
P0.

The intuition for (6) is that the order of magnitude of the probability flow from ω to α
equals the order of magnitude of the largest probability flow from ω to any of the pieces
of α.

The intuition for (7) is more subtle. Consider anyαm
∈ Π(α). Lemma 3.1 implies that the

order of magnitude of the probability mass on αm as a proportion of the probability mass
on α is given by rαm −minαn∈Π(α) rαn . By Lemma 2.1, this quantity equals maxαn∈Π(α) C (αn)−
C (αm), the first two terms of (7). The final term in (7) gives the share of the probability
mass on αm that flows to ω. The sum of the three terms then gives the order of magnitude

–6–

of the share of the probability mass on α that flows to ω from αm. Considering all possible
αm
∈ Π(α), we obtain (7).
Note that (6) and (7) do not directly tell us the value for C(α, β) when α and β are

both newly created composites, d(α) = d(β) = `. However, we show in Lemma A.2 in
Appendix A that if Π(α) and Π(β) are cycles and one of the cycles is consolidated, then
the other cycle remains a cycle in the new partition and can be consolidated at the next
step. Therefore, C(α, β) is given by applying (6) and (7) consecutively. Using this ability
to consider decompositions as sequential consolidations of a single cycle at each step, we
obtain the following theorem.

Theorem 3.3. For any given cyclic decomposition P0, . . . ,PL∗ , there exists a CLE decomposition
P Ed

0 , . . . ,P Ed
L of which P0, . . . ,PL∗ is a subsequence.

3.1 Edmonds’ Algorithm

Consider a weighted, directed graph on the vertex set P`. Let the weight of a directed
edge from from α to β be given by C(α, β).

Definition. A (directed) spanning tree with root α ∈ P` is an acyclic directed graph on P` in
which every vertex except α has precisely one outgoing edge.

The algorithm of Chu and Liu (1965) and Edmonds (1967) can be used to find span-
ning trees that have minimum or maximum sum of edge weights.2 The algorithm has
two stages, an aggregative stage in which simple cycles in the graph are consolidated
and a disaggregative stage in which this consolidation is reversed and a spanning tree
constructed. We shall follow the steps for constructing a spanning tree with a minimum
sum of edge weights.

3.1.1 Aggregation

Start with the complete, weighted, directed graph G0 on P Ed
0 that has edge weights

given by C({x}, {y}) for each {x}, {y} ∈ P Ed
0 . At step `, ` ≥ 1, of the aggregative stage of

the algorithm, the graph G`−1 on P Ed
`−1 is used to construct a complete, weighted, directed

graph G` on a new partition P Ed
` of X .

To do this, the algorithm considers some subgraph Ḡ`−1 of G`−1 on P Ed
`−1 that, for each

vertex, includes a single outgoing edge from amongst its outgoing edges with minimal
weight. By construction, Ḡ`−1 must include at least one graphical simple cycle, a sequence

2The cited papers find spanning arborescences (every vertex except α has precisely one incoming edge),
which is the same problem following a transformation.

–7–

P0 {u}

{v}

{w}

{x}

{y}

{z} Γ0 =

{{
{u}, {v}, {w}

}
,
{
{x}, {y}

}}4

2

2

4

5

2 1

3

4

P1 {u, v, w}

{x}

{y}

{z} Γ1 =

{{
{x}, {y}

}}4

7

2 1

3

4

P2 {u, v, w} {x, y} {z} Γ2 =

{{
{x, y}, {z}

}}5

7

4

4

P3 {u, v, w} {x, y, z} Γ3 =

{{
{u, v, w}, {x, y, z}

}}5

7

P4 {u, v, w, x, y, z}

Figure 2: Aggregation of states in a CLE decomposition/Edmonds’ algorithm. This
diagram illustrates cyclic decomposition, moving step by step from P0 to P4. The cost
function C(·, ·) is given by edge weights, with missing edges denoting transitions with
infinite cost. The values of C(·, ·) on the initial partition P0 are assumed. Costs for
partitions P`, ` > 0, are calculated as described in the text. Least cost transitions are
denoted by an underlined cost and a red arrow, so that a subset of elements in a partition
is a cycle if is the vertex set for a (graphical) simple cycle of such edges in the diagram. At
each step, one simple cycle is consolidated. For example, in moving from P0 to P1, cycle
{{u}, {v}, {w}} ⊂ P0 is consolidated to form {u, v,w} ∈ P1, with the costs of transitions to and
from {u, v,w} given by expressions (6) and (7) in the text. For example, C({u, v,w}, {y}) =
min{4 − 4 +∞, 4 − 2 +∞, 4 − 2 + 5} = 7.

–8–

β0, β1, . . . , βn̄ of non-repeated vertices, with edges from βn to βn+1 for n = 0, . . . , n̄ − 1, and
an edge from βn̄ to β0.

One graphical simple cycle is then consolidated to a single vertex and new edge
weights are calculated.3 For ` = 0, as edge weights are given by C(·, ·), graphical simple
cycles clearly correspond to the simple cycles defined earlier in the paper. Furthermore,
the values that the algorithm gives for the new edge weights following the consolidation
of a graphical simple cycle (see, e.g. p.1398 of Chu and Liu, 1965) are exactly the values
of the cost function given in (6) and (7). Thus, at every stage in the aggregation, the set of
graphical simple cycles in the algorithm corresponds to the set of simple cycles in a CLE
decomposition, and the edge weights calculated by the algorithm correspond to the cost
functions calculated by a CLE decomposition.

So CLE decompositions are the aggregative stage of Edmonds’ algorithm. Theorem
3.3 then tells us that all cyclic decompositions, including FW decompositions, are reduced
form versions of the aggregative stage of Edmonds’ algorithm. An example of such a
decomposition/aggregration is given in Figure 2.

3.1.2 Disaggregation

After the aggregative stage of the algorithm creates a CLE decomposition P Ed
0 , . . . ,P Ed

L ,
the disaggregative stage of the algorithm (illustrated in Figure 3) proceeds as follows.

Assume we have constructed spanning trees TL,TL−1, . . . ,T` on the partitions/vertex
sets P Ed

L ,P Ed
L−1, . . . ,P Ed

` . We construct a graph on P Ed
`−1, starting with T` on P Ed

` . Take α` ∈ P Ed
`

that was consolidated in moving from P Ed
`−1 to P Ed

` at the aggregative stage of the algorithm.
Recall that P Ed

`−1 = P Ed
` r {α`} ∪Π(α`).

(1) Firstly, for any edges in T` that do not include α`, include a corresponding edge in
T`−1 between the same vertices.

(2) Secondly, note that Π(α`), by definition of a CLE decomposition, is a simple cycle
in P Ed

`−1. Thus we can write Π(α`) = {α0
`−1, . . . , α

m̄
`−1} for α1

`−1 ∈ σ`−1(α0
`−1), . . . , αm̄

`−1 ∈

σ`−1(αm̄−1
`−1), α0

`−1 ∈ σ`−1(αm̄
`−1). Add corresponding directed edges to T`−1, that is from

α0
`−1 to α1

`−1, . . ., αm̄−1
`−1 to αm̄

`−1 and αm̄
`−1 to α0

`−1. The vertices Π(α`) and these edges form
a graphical simple cycle.

3This follows Edmonds (1967). The presentation of Chu and Liu (1965) consolidates multiple simple
cycles at each step. This creates multiple edges between newly created composites. This is not a problem,
however, as one need only consider the minimum of these edges, which is what is obtained by consecutive
application of (6) and (7).

–9–

(3) Next, account for edges that were directed to or from α` in T`. Note that any such
edge is associated with some αm

`−1 ∈ Π(α`) that solved the minimization problem
in (6) or (7) when Π(α`) was consolidated to make α` at the aggregative stage of
the algorithm. Replace each edge to or from α` in T` with an edge to or from the
appropriate αm

`−1 in T`−1.

(4a) If α` was not the root of T`, then some αm
`−1 ∈ Π(α`) will now have two outgoing

edges. One of these edges will be to another element of Π(α`). Delete this edge. The
resulting T`−1 is a spanning tree on P Ed

`−1.

(4b) If α` is the root of T`, then choose an element of Π(α`) whose outgoing edge has
the largest edge weight. That is, choose an element that solves maxξ∈Π(α`) C(ξ). Let
α∗`−1 ∈ Π(α`) be the chosen element. Delete the outgoing edge from α∗`−1 in T`−1. The
resulting T`−1 is a spanning tree on P Ed

`−1.

Iterating the above, the algorithm eventually obtains a spanning tree T0 on P Ed
0 . It was

shown by Chu and Liu (1965) and Edmonds (1967) that T0 has minimal sum of edge
weights amongst all spanning trees on P Ed

0 .
Note that ifα∗`−1 is the root of T`−1, then T`−2,T`−3, . . . ,T0 will all be rooted at some β ⊆ α∗`.

For ξ ∈ Π(α`) such that C(ξ) < C(α∗`−1), we have, by Lemma 2.1, that rα∗
`−1
< rξ. Therefore,

µηξ → 0 as η→ 0. This logic again applies when α∗`−1 is disaggregated. Continuing in this
manner, we obtain the following theorem.

Theorem 3.4. rα = 0 if and only if there exists a spanning tree on P0 with root {x} ⊆ α that has
minimal sum of edge weights amongst all spanning trees on P0.

Readers may recognize this as the tree characterization of stochastically stable states
(Freidlin and Wentzell, 1984; Young, 1993), a result that underpins a vast literature on
evolutionary game theory in economics. The decomposition based proof discussed above
is notably transparent in illustrating the forces that drive this result.

Note that if rα > 0, then µηα → 0 at an exponential rate as η→ 0. However, for rα = 0, it
may still be the case that µηα → 0 at a subexponential rate. If we strengthen the assumption
of weakly regular Markov chains and replace expression (1) by

(8) Pηxy =
(
axy + o(1)

)
exp

(
−

1
η

k
)

for some axy > 0 and some k > 0,

then we have the class of regular Markov chains (Young, 1993). In this case, rα > 0 if and
only ifµηα → 0 as η→ 0. This last statement about regular Markov chains is usually proved
by direct reference to the classic Markov chain tree theorem (see, e.g. Lemma 3.1 in Freidlin

–10–

and Wentzell, 1984). Interestingly, it cannot be proved by a decomposition argument. As
mentioned subsequent to Lemma 3.2, cyclic decompositions jettison information on prob-
abilities other than the exponential decay costs captured by the cost function. Specifically,
regardless of whether Pηxy is given by (1) or (8), we have that C({x}, {y}) = k.

3.2 The invariant measure for all states

Take a cyclic decomposition P0, . . . ,PL. As µη is a probability measure on X , it must
be that µηX = 1 for all η. Therefore rX = 0. If we write αL = X ∈ PL, and let α∗L−1 solve
maxξ∈Π(αL) C(ξ), then Lemma 2.1 together with Lemma 3.1 implies that rα∗L−1

= 0. Lemma
2.1 then further implies that for all αL−1 ∈ Π(αL), we have rαL−1 = C(α∗L−1) − C(αL−1). This
logic continues as the decomposition is disaggregated and we obtain the following4

Theorem 3.5. Given any cyclic decomposition P0, . . . ,PL, let {x} = β0, . . . , βn̄ = X be the sequence
(with no repetitions) of all composites in the decomposition that have x as an element. Then

(9) r{x} =

n̄∑
n=1

max
ξ∈Π(βn)

C(ξ) − C(βn−1).

Probably the easiest way to understand the intuition behind Theorem 3.5 is via the tree
structure of cyclic decompositions. This tree structure was noted by Catoni (1999) for FW
decompositions, but naturally applies to all cyclic decompositions. All this means is that
every composite in a decomposition, starting from PL = {X }, branches into its constituent
pieces. At each branching in the tree structure, values of r can be calculated by pairwise
comparison of values of C(·).

Consider Figure 4, in which we depict the tree structure for the decomposition in
Figure 2. At the top of Figure 4, we have composite {u, v,w, x, y, z}. As this includes the
entire state space it must be that r{u,v,w,x,y,z} = 0. This composite is formed of the cycle
of two elements {u, v,w} and {x, y, z}. As C({u, v,w}) > C({x, y, z}), it follows from Lemma
3.1 that 0 = r{u,v,w} < r{x,y,z}. This logic continues down the diagram. Simply follow the
diagram from the top, choosing the maximum value of C(·) at every step. In the example
under consideration, this procedure implies that {u} is the only composite in P0 for which
r = 0, and that therefore µ0

{u} = 1.
A similar, though less precise, approach that uses pairwise comparison is the following,

that uses a rough lower bound on probability flows into {x} and compares it to probability

4Theorem 3.5 here is equivalent to Theorem 4.2 of Cui and Zhai (2010) and Theorem 10 of Levine and
Modica (2016).

–11–

P4 {u, v, w, x, y, z}

P3 {u, v, w} {x, y, z} Π
(
{u, v, w, x, y, z}

)
=

{
{u, v, w}, {x, y, z}

}5

7

P2 {u, v, w} {x, y} {z} Π
(
{x, y, z}

)
=

{
{x, y}, {z}

}
4

4

P1 {u, v, w}

{x}

{y}

{z} Π
(
{x, y}

)
=

{
{x}, {y}

}
2 1

P0 {u}

{v}

{w}

{x}

{y}

{z} Π
(
{u, v, w}

)
=

{
{u}, {v}, {w}

}4

2

2

Figure 3: Disaggregation of states under Edmonds’ algorithm. This diagram illustrates
disaggregation and the construction of a spanning tree under Edmonds’ algorithm, mov-
ing step by step from P4 to P0. At each step a composite is expanded into the cycle
that formed it during the aggregation phase. For example, {x, y, z} ∈ P3 is expanded to
{{x, y}, {z}} ⊂ P2 and edges from {x, y} to {z} and from {z} to {x, y} are added. Next, edges to
or from the composite that is expanded are assigned to the elements of the cycle that solved
(6) or (7) when the cycle was consolidated during the aggregation phase. For example,
the edge from {x, y, z} to {u, v,w} is replaced by an edge from {x, y} to {u, v,w}. Finally, an
edge in the expanded cycle is deleted (denoted by a dotted line in the diagram). If the
expanded composite was not the root of the tree at the previous step (e.g. {x, y, z} in P3),
then the element of the cycle with an outgoing edge to outside of the cycle (e.g. {x, y} in
{{x, y}, {z}}) has its outgoing edge within the cycle deleted (e.g. the edge from {x, y} to {z}).
If the expanded composite was the root of the tree at the previous step (e.g. {u, v,w} in P1),
then the element of the cycle with the highest least cost transition (e.g. {u} in {{u}, {v}, {w}})
has its outgoing edge deleted (e.g. the edge from {u} to {v}).

–12–

{u, v, w, x, y, z}
r = 0

{u, v, w}
r = 0

{x, y, z}
r = 2

{u}
r = 0

{v}
r = 2

{w}
r = 2

{x, y}
r = 2

{z}
r = 2

{x}
r = 3

{y}
r = 2

7 5

4 2 2 4 4

1 2

Figure 4: The tree structure of decompositions. The tree structure of the decomposition
considered in Figure 2. Edges connect composites to their pieces below them in the
diagram. Edge weights give C(·) for the composite at the lower end of the edge in
question. For each composite α, we give rα which measures the order of magnitude of
the probability placed on α by the invariant measure. These are calculated using the
values of C(·). For example, {x, y} has r{x,y} = 2, therefore by Lemma 3.1, one of its pieces
has r = 2 and none have r < 2. As C({x}) = 1 < 2 = C({y}) and Lemma 2.1 states that
C({x}) + r{x} = C({y}) + r{y}, it must be that r{x} = 3 and r{y} = 2.

–13–

flows out of {x}. The result can be proved directly (Ellison, 2000) or as a corollary of
Theorem 3.4 (given here).

Theorem 3.6. If, for some x, for all y , x there exists a sequence of composites in P0, {y} =

β0, . . . , βn̄ = {x}, such that

(10)
n̄−1∑
n=0

C(βn, βn+1) −
n̄∑

n=1

C(βn) < 0,

then µ0
{x} = 1.

The proof takes any spanning tree Ty on P0 rooted at {y}, y , x, and constructs a
spanning tree Tx rooted at {x} by adding edges from βn to βn+1, n = 0, . . . , n̄−1 and deleting
existing edges leaving βn, n = 1, . . . , n̄. By (10), Tx has a lower sum of edge weights than
Ty. Therefore, by Theorem 3.4, it must be that µ0

{y} = 0 for all y , x, and therefore µ0
{x} = 1.

Theorem 3.6 is known as the radius/modified-coradius theorem, following the termi-
nology of Ellison (2000). Specifically, inequality (10) can be written as

(11)
n̄−1∑
n=0

C(βn, βn+1) −
n̄−1∑
n=1

C(βn) < C(βn̄).

The right hand side of (11) is the radius of x. This measures probability flows from x to any
other state. The maximum (across y , x) minimum (across all sequences β0, . . . , βn̄) of the
first term in the left hand side of (11) is the coradius of x. Including the second term, we
have the modified-coradius of x. These bound (from below) probability flows from all y , x
into x. These are not always tight bounds, as we see in the example in Figure 2, where
the modified-coradius of any given state in {u, v,w} is 7, but C({x, y, z}) = 5, implying that
true probability flows from X r {u, v,w} to {u, v,w} are significantly higher than the bound
given by the modified-coradius.

This concludes the main body of the paper.

–14–

Appendix

A. Proofs.

Proof of Lemma 2.1. Consider a cycle Γ` =
⋃m̄

m=0{α
m
}. For 0 ≤ m ≤ m̄ and letting αm̄+1 = α0,

at the invariant measure of the process we must have

(12) µηαmP̄η
αmαm+1 ≤

∑
β∈P`r{αm+1}

µη
αm+1P̄

η

αm+1β
≤ µη

αm+1 (|P`| − 1) max
β∈P`r{αm+1}

P̄η
αm+1β

The left hand side of (12) is the flow of probability from αm to αm+1. The central term is
the flow of probability from αm+1 to all other composites. Applying the transformation
−η log(·) to the left and right hand sides of (12) and taking limits as η→ 0, we obtain

(13) rαm + C(αm, αm+1)︸ ︷︷ ︸
=C(αm)

≥ rαm+1 + min
β∈P`r{αm+1}

C(αm+1, β) = rαm+1 + C(αm+1).

As (13) holds for n = 1, . . . ,m, we obtain

(14) rα1 + C(α1) ≥ rα2 + C(α2) ≥ . . . ≥ rαm̄ + C(αm̄) ≥ rα1 + C(α1),

so all of the inequalities in (14) can be strengthened to equalities, and we are done. �

Proof of Lemma 2.2. Given a partition P` and least cost correspondence σ`, define a Markov
chain on P` with transition matrix Q given by

(15) Qαβ =


1

|σ`(α)| , if β ∈ σ`(α),

0, otherwise.

By definition of σ`, this Markov chain has no absorbing states. However, as the state space
is finite, it must have a set of recurrent classes. Any such recurrent class must have at
least two elements, otherwise it would be an absorbing state. Consider one such recurrent
class R. To satisfy the definition of a recurrent class, we require

(I) For all α ∈ R, β < R, we have Qαβ = 0.

(II) For all α, β ∈ R, there exists a finite sequence α = γ0, . . . , γn = β of elements of R such
that Qγmγm+1 > 0 for m = 1, . . . ,n − 1.

–15–

Condition (II) implies that we can construct a sequence γ0, γ1, . . . , γm̄, γm̄+1 = γ0 of
elements of R such that Qγmγm+1 > 0 for m = 0, . . . , m̄ and R =

⋃m̄
m=0 γ

m. Conversely, the
existence of such a sequence trivially implies (II). Using this observation and our definition
of Qαβ, Conditions (I) and (II) can be rewritten as

(Ia) R is closed under σ`.

(IIa) For all α, β ∈ R, there exists a finite sequence γ0, γ1, . . . , γm̄, γm̄+1 = γ0 of elements of
R such that γm+1

∈ σ`(γm) for m = 0, . . . , m̄ and R =
⋃m̄

m=0 γ
m.

Conditions (Ia) and (IIa) constitute the definition of R being a closed cycle in P`. Conse-
quently, any set of states is a recurrent class if and only if it is a closed cycle in P`.

Therefore, the set of closed cycles of P` is uniquely determined and, consequently, so
is P`+1. As P`+1 has strictly fewer elements than P`, starting from P0 =

⋃
x∈X {{x}}, the

partition PL = {X }will be reached in a finite number of steps. �

Proof of Lemma 2.3. Given a partition P` and least cost correspondence σ`, we know from
the proof of Lemma 2.2 that some (closed) cycle Γ` exists. If such a cycle is simple, then
we let ΓS

` = Γ`. Consider the case in which Γ` is not simple. Recall that Γ` =
⋃m̄

m=0{α
m
} for

some sequence α0, . . . , αm̄ that satisfies α1
∈ σ`(α0), . . . , α1

∈ σ`(αm̄). Any such sequence
must contain repeated elements or else Γ` would be simple.

Without loss of generality, let αm′ = αm′′ be the first repeated element within such
a sequence, so that we have α0, . . . , αm′ , . . . , αm′′ , . . . , αm̄. By construction, the sequence
αm′ , . . . , αm′′−1 then contains no repeated elements and ΓS

` =
⋃m′′−1

m=m′{α
m
} satisfies the defini-

tion of a simple cycle.
Consolidate ΓS

` to obtain P`+1. As P`+1 has strictly fewer elements than P`, starting from
P0 =

⋃
x∈X {{x}}, the partition PL = {X }will be reached in a finite number of steps. �

Lemma A.1. Let A = {α0, . . . , αm
} be a finite set of composites. If α =

⋃
αm∈A α

m, then rα =

minαm∈A rαm .

Proof. As α =
⋃
αm∈A α

m, we have

(16) max
αm∈A

µηαm ≤ µ
η
α ≤ |A|max

αm∈A
µηαm .

Applying the transformation −η log(·) and taking limits as η→ 0,

(17) min
αm∈A

rαm ≥ rα ≥ min
αm∈A

rαm ,

thus proving the lemma. �

–16–

Proof of Lemma 3.1. As α =
⋃
αm∈Π(α) α

m, Lemma A.1 implies that rα = minαm∈Π(α) rαm . �

Proof of Lemma 3.2. Let Π(α) = {α0, . . . , αm̄
}. Consider the inequalities

(18) max
αm∈Π(α)

∑
x∈ω
y∈αm

Pηxy

µη
{x}

µηω︸ ︷︷ ︸
=P̄η

ωαm

≤

∑
x∈ω
y∈α

Pηxy

µη
{x}

µηω︸ ︷︷ ︸
=P̄ηωα

≤ |Π(α)| max
αm∈Π(α)

∑
x∈ω
y∈αm

Pηxy

µη
{x}

µηω
.

︸ ︷︷ ︸
=P̄η

ωαm

Applying the transformation−η log(·) and taking limits as η→ 0, expression (18) becomes

min
αm∈Π(α)

C(ω, αm) ≥ C(ω, α) ≥ min
αm∈Π(α)

C(ω, αm),(19)

thus proving expression (6) in the statement of the lemma.
Now consider the inequalities

(20) max
αm∈Π(α)

∑
x∈αm
y∈ω

Pηxy

µη
{x}

µηα︸ ︷︷ ︸
=
µ
η
αm

µ
η
α

P̄η
αmω

≤

∑
x∈α
y∈ω

Pηxy

µη
{x}

µηα︸ ︷︷ ︸
=P̄ηαω

≤ |Π(α)| max
αm∈Π(α)

∑
x∈αm
y∈ω

Pηxy

µη
{x}

µηα
.

︸ ︷︷ ︸
=
µ
η
αm

µ
η
α

P̄η
αmω

Applying the transformation−η log(·) and taking limits as η→ 0, the central term becomes
C(α,ω). As −η log(|Π(α)|)→ 0, the left and right term converge to the same value, which
we now compute.

− η log
(

max
αm∈Π(α)

(
µηαm

µηα
P̄ηαmω

))
= min

αm∈Π(α)

(
−η log

(
µηαm

µηα
P̄ηαmω

))
(21)

= min
αm∈Π(α)

(
−η logµηαm + η logµηα − η log P̄ηαmω

)
Taking limits of (21) as η→ 0, we obtain

min
αm∈Π(α)

(rαm − rα + C(αm, ω)) = min
αm∈Π(α)

(
rαm − min

αn∈Π(α)
rαn + C(αm, ω)

)
(22)

= min
αm∈Π(α)

(
−C(αm) + max

αn∈Π(α)
C(αn) + C(αm, ω)

)
,

where the first equality follows from Lemma 3.1 and the second equality from the impli-
cation of Lemma 2.1 that rαm + C(αm) = minαn∈Π(α) rαn + maxαn∈Π(α) C(αn) for all αm

∈ Π(α).

–17–

To see that the latter holds, note that as Π(α) is a cycle in P`−1, Lemma 2.1 states that
rαm + C(αm) is constant across all αm

∈ Π(α). Therefore any αm that minimizes rαm must also
maximize C(αm). This proves expression (7) in the statement of the lemma. �

Lemma A.2. If

1. Γ1
k , Γ2

k , Γ3
k are cycles in Pk.

2. Γ1
k = {α0, . . . , αn̄

}, Γ2
k = {α0, . . . , αn′

}, n′ ≤ n̄ so that Γ2
k ⊆ Γ1

k .

3. Γ1
k ∩ Γ3

k = ∅.

4. Pk+1 = Pk ∪ {α} r Γ2
k .

then

(i) Γ3
k is a cycle in Pk+1.

(ii) If Γ1
k , Γ2

k , then Γk+1 = {α, αn′+1, . . . , αn̄
} is a cycle in Pk+1.

Proof. Consider ω ∈ Pk r Γ2
k .

By (6), we have that

C(ω, α) = min
n≤n′

C(ω, αn).(23)

Together with the definitions of the least cost correspondence and cycles, this implies the
following two facts.

Fact 1. If αn
∈ σk(ω) for some n ≤ n′, then σk+1(ω) = σk(ω) ∪ {α} r Γ2

k .

Fact 2. If αn < σk(ω) for all n ≤ n′, then σk+1(ω) = σk(ω).

Now note that by assumptions (2) and (3) of the lemma, everyω ∈ Γ3
k satisfies the condition

that ω ∈ PkrΓ2
k . Therefore Facts 1 and 2 apply and σk+1(ω) are such that Γ3

k remains a cycle
in Pk+1. This proves implication (i) of the lemma.

By (7), we have that

C(α,ω) = min
αn∈Π(α)

(
max
αv∈Π(α)

C (αv) − C (αn) + C(αn, ω)
)

(24)

= min
n≤n′

(
max
v≤n′

C (αv) − C (αn) + C(αn, ω)
)
.

–18–

By definition of C(·), we have that−C (αn)+C(αn, ω) ≥ 0. Furthermore,−C (αn)+C(αn, ω) = 0
if and only if ω ∈ σk(αn). As Γ1

k is a cycle in Pk, it must be that this holds for some αn
∈ Γ2

k

and ω = αñ
∈ Γ1

k r Γ2
k . Therefore,

Fact 3. σk+1(α) = ∪n′
n=1σk(αn) r Γ2

k .

Consider some sequence of composites that satisfies the definition of Γ1
k being a cycle in Pk.

Replace every composite αn, n ≤ n′ in this sequence with α. Where consecutive instances
of α arise as a consequence, replace these with one instance of α. Facts 1 and 2 imply that
transitions along this new sequence with α as the destination are least cost transitions in
Pk+1. Fact 3 implies that transitions along this sequence with α as the starting point are
least cost transitions in Pk+1. Hence, Γk+1 = {α, αn′+1, . . . , αn̄

} is a cycle in Pk+1. �

Proof of Theorem 3.3. The proof proceeds by induction.

Note that P Ed
0 = P0 =

⋃
x∈X {{x}}.

Assume that for some k and l, we have a partial CLE decomposition P Ed
0 , . . . ,P Ed

k that
contains P0, . . . ,P` as a subsequence and has P Ed

k = P`. We complete the induction by
extending P Ed

0 , . . . ,P Ed
k via a sequence P Ed

k ,P Ed
k+1, . . . ,P

Ed
k+m = P`+1.

Extending the sequence

We shall use a further induction. Assume that P Ed
k has been extended to P Ed

k , . . . ,P Ed
k′

satisfying the following conditions. Firstly, if α ∈ P` and α ∈ P`+1, then α ∈ P Ed
k′ . Secondly,

if α < P` and α ∈ P`+1, then either (i) α ∈ P Ed
k′ ; or (ii) Π(α) is a cycle in P Ed

k′ . These conditions
are trivially satisfied for k′ = k, as P Ed

k = P`. Further note that if (ii) does not apply to
any α, then P Ed

k′ = P` and we are done. Otherwise, choose some α such that (ii) holds and
extend P Ed

k′ as follows.

By assumption, there is some cycle, Γk′ = {α1, . . . , αn̄
} ⊆ P Ed

k′ , that consolidates to α.

Step A

By the same argument as in the proof of Lemma 2.3, there must be some (not necessarily
unique) simple cycle ΓS

k′ ⊆ Γk′ . Assume, w.l.o.g., that ΓS
k′ = {α1, . . . , αn′

} for some n′ ≤ n̄.
Consolidate ΓS

k′ to composite β1 to give the partition P Ed
k′+1. By Lemma A.2, other than Π(α),

any other cycles in Pk′ to which (ii) above applies remain cycles in P Ed
k′+1.

If β1 = α then goto End. Else continue to Step B.

Step B

By Lemma A.2, Γk′+1 = {β1, αn′+1, . . . , αn̄
} is a cycle in P Ed

k′+1. Repeat Step A, inputting P Ed
k′+1

instead of P Ed
k′

–19–

End

This completes the inductive step of the second induction (Extending the sequence),
which completes the inductive step of the first induction. �

Proof of Theorem 3.4. Lemma A.1 implies that rα = minx∈α r{x}. Therefore, rα = 0 if and
only if there exists x ∈ α such that r{x} = 0. Consider x ∈ α and a CLE decomposition
P0, . . . ,PL. Let {x} = β0, . . . , βn̄ = X be the sequence (with no repetitions) of all composites
in the decomposition that have x as an element. We consider the disaggregation stage of
Edmonds’ algorithm as described in Section 3.1.2, in particular step (4b). This allows us
to show that r{x} = 0 implies that {x} is the root of a minimal spanning tree on P0, whereas
r{x} > 0 implies that {x} is not the root of any minimal spanning tree on P0.

Consider r{x} = 0. Lemma 3.1 implies that rβn = 0 for n = 0, . . . , n̄. Hence, for n =

1, . . . , n̄, we have that βn−1 solves minβ∈Π(βn) rβ. Lemma 2.1 then implies that βn−1 solves
maxβ∈Π(βn) C(β). Therefore, if βn, n > 0, d(βn) = ` is a root of T`, then βn−1 may be chosen
to have its outgoing edge deleted when βn is disaggregated. When this is the case, βn−1

is then a root of T`−1. As this argument applies for n = n̄, n̄ − 1, . . . , 1, we can thereby
obtain T0 that is rooted at {x}. Chu and Liu (1965) and Edmonds (1967) proved that T0 has
minimum sum of edge weights amongst all spanning trees on P0.

Now consider r{x} > 0. As rαL = rX = 0, Lemma 3.1 implies that there exists n > 0 such
that rβn−1 > 0 and rβn = 0. Lemma 3.1 further implies that there exists β∗ ∈ Π(βn) such that
rβ∗ = 0. Therefore, βn−1 does not solve minβ∈Π(βn) rβ. Lemma 2.1 then implies that βn−1 does
not solve maxβ∈Π(βn) C(β). Therefore, if d(βn) = ` and βn is a root of T`, then βn−1 will never
be chosen to have its outgoing edge deleted when βn is disaggregated. Hence βn−1 is never
a root of T`−1. Consequently, no tree T0 with minimum sum of edge weights amongst all
spanning trees on P0 is rooted at {x}. �

Proof of Theorem 3.5. For n = 1, . . . , n̄, by Lemma 2.1 we have

(25) rβn−1 + C(βn−1) = min
ξ∈Π(βn)

rξ + max
ξ∈Π(βn)

C(ξ).

Rearranging (25), we obtain

(26) rβn−1 − min
ξ∈Π(βn)

rξ = max
ξ∈Π(βn)

C(ξ) − C(βn−1).

Summing (26) over n = 1, . . . , n̄ and cancelling terms on the left hand side using Lemma
3.1,

–20–

(27) rβ0︸︷︷︸
=r{x} as β0={x}

− min
ξ∈Π(βn̄)

rξ︸ ︷︷ ︸
=rβn̄ by Lemma 2.1

=0 as βn̄=X

=

n̄∑
n=1

max
ξ∈Π(βn)

C(ξ) − C(βn−1).

�

Proof of Theorem 3.6. Let x, y, {y} = β0, . . . , βn̄ = {x} be as in the theorem statement. Assume
that µ0

{y} > 0. By Theorem 3.4, there exists a spanning tree Ty on P0 with minimum sum
of edge weights that has {y} as its root. Obtain a new graph Tx from Ty by deleting
the existing outgoing edges from vertices β1, . . . βn̄ and adding edges from βn to βn+1 for
n = 0, . . . , n̄ − 1. Tx is a spanning tree on P0 rooted at {x} that, by (10), has lower sum of
edge weights than the tree rooted at {y}. Contradiction. �

References

Arieli, I., Babichenko, Y., Peretz, R., and Young, H. P. (2019). The speed of innovation
diffusion in social networks. Econometrica.

Arieli, I. and Young, H. P. (2016). Stochastic learning dynamics and speed of convergence
in population games. Econometrica, 84(2):627–676.

Catoni, O. (1999). Simulated annealing algorithms and Markov chains with rare transi-
tions. In Azéma, J., Émery, M., Ledoux, M., and Yor, M., editors, Séminaire de Probabilités
XXXIII, pages 69–119. Springer, Berlin.

Chu, Y.-J. and Liu, T.-H. (1965). On the shortest arborescence of a directed graph. Science
Sinica, 14:1396–1400.

Cui, Z. and Zhai, J. (2010). Escape dynamics and equilibria selection by iterative cycle
decomposition. Journal of Mathematical Economics, 46(6):1015 – 1029.

Edmonds, J. (1967). Optimum branchings. Journal of Research of the National Bureau of
Standards, 71:233–240.

Ellison, G. (1993). Learning, local interaction, and coordination. Econometrica, 61:1047–
1071.

Ellison, G. (2000). Basins of attraction, long run equilibria, and the speed of step-by-step
evolution. Review of Economic Studies, 67:17–45.

Foster, D. P. and Young, H. P. (1990). Stochastic evolutionary game dynamics. Theoretical
Population Biology, 38:219–232. Corrigendum, 51 (1997), 77-78.

–21–

Freidlin, M. I. and Wentzell, A. D. (1984). Random Perturbations of Dynamical Systems.
Springer, New York.

Kandori, M., Mailath, G. J., and Rob, R. (1993). Learning, mutation, and long run equilibria
in games. Econometrica, 61:29–56.

Levine, D. K. and Modica, S. (2016). Dynamics in stochastic evolutionary models. Theo-
retical Economics, 11(1):89–131.

Newton, J. (2018). Evolutionary game theory: A renaissance. Games, 9(2):31.

Newton, J. and Angus, S. D. (2015). Coalitions, tipping points and the speed of evolution.
Journal of Economic Theory, 157(0):172 – 187.

Newton, J. and Sawa, R. (2015). A one-shot deviation principle for stability in matching
problems. Journal of Economic Theory, 157(0):1 – 27.

Norman, T. W. (2009). Rapid evolution under inertia. Games and Economic Behavior,
66(2):865–879.

Sandholm, W. H. (2010). Population Games and Evolutionary Dynamics. MIT Press, Cam-
bridge.

Young, H. P. (1993). The evolution of conventions. Econometrica, 61:57–84.

Young, H. P. (2011). The dynamics of social innovation. Proceedings of the National Academy
of Sciences, 108 Suppl 4:21285–91.

–22–

